2024-11-16 16:33:46 | 人围观 | 评论:
《幂函数》的教学设计方案
考虑到学生已经学习了指数函数与对数函数,对函数的学习、研究有了一定的经验和基本方法,所以教学流程又分两条线,一条以内容为明线,另一条以研究函数的基本内容和方法为暗线,教学过程中同时展开。
学生思考,作答,教师引导学生叙述语言的逻辑性。
训练学生用函数性质进行解释,强化学生逻辑意识。其中第④小题是利用指数函数性质解决,注意区别。
⒁请学生考虑可以如何验证上述答案的正确。
学生实践。使用计算器验证,提高学生使用学习工具的意识。
⒂简单应用2:幂函数=「 -3-3」x 在区间 上是减函数,求的值。
学生思考,作答。教师板演。对幂函数定义进一步巩固,对函数性质作初步应用。同时训练学生对初步答案进行筛选。
⒃简单应用2:
已知「a+1」 <「3-2a」 ,试求a的`取值范围。
学生思考,作答。教师板演。
训练学生灵活使用性质解题。
数学交流⒄小结:今天的学习内容和方法有哪些?你有哪些收获和经验?学生思考、小组讨论,教师引导。 让学生回顾,小结,将对学生形成知识系统产生积极影响。
数学再现
⒅布置作业:
课本p.73 2、3、4、思考5思考5作为训练学生应用数学于实际的较好例子,应让能力较好学生得到充分发展。
几点说明:
⑴本节课开始时要注意用相关熟悉例子引入新课。
⑵画函数图象时,如果学生已能够运用计算器或相关计算机软件作图,可以让学生自己操作,以提高学生探索问题的兴趣和能力,并提高教学效率。
⑶由于课程标准对幂函数的研究范围有相对限制,故第11个问题要求较高,建议视具体情况选择教学。
⑷本设计相关采用P
全站搜索